A New Sine-Gordon Equation Expansion Algorithm to Investigate some Special Nonlinear Differential Equations
نویسنده
چکیده
A new transformation method is developed using the general sine-Gordon travelling wave reduction equation and a generalized transformation. With the aid of symbolic computation, this method can be used to seek more types of solutions of nonlinear differential equations, which include not only the known solutions derived by some known methods but new solutions. Here we choose the double sine-Gordon equation, the Magma equation and the generalized Pochhammer-Chree(PC) equation to illustrate the method. As a result, many types of new doubly periodic solutions are obtained. Moreover when using the method to these special nonlinear differential equations, some transformations are firstly needed. The method can be also extended to other nonlinear differential equations.
منابع مشابه
New study to construct new solitary wave solutions for generalized sinh- Gordon equation
In this work, we successfully construct the new exact traveling wave solutions of the generalized Sinh–Gordon equation by new application of the homogeneous balance method. The idea introduced in this paper can be applied to other nonlinear evolution equations.
متن کاملExact Solution for Nonlinear Local Fractional Partial Differential Equations
In this work, we extend the existing local fractional Sumudu decomposition method to solve the nonlinear local fractional partial differential equations. Then, we apply this new algorithm to resolve the nonlinear local fractional gas dynamics equation and nonlinear local fractional Klein-Gordon equation, so we get the desired non-differentiable exact solutions. The steps to solve the examples a...
متن کاملNew Exact Travelling Wave Solutions of the Discrete Sine-Gordon Equation
In this paper, we explore more applications of the hyperbolic function approach, which was used to find new exact travelling wave solutions of nonlinear partial differential equations or coupled nonlinear partial differential equations (PDES), to special discrete nonlinear equations. Some exact travelling wave solution of the discrete sine-Gordon equation are obtained in terms of hyperbolic fun...
متن کاملExtended Painlevé Expansion, Nonstandard Truncation and Special Reductions of Nonlinear Evolution Equations
To study a nonlinear partial differential equation (PDE), the Painlev́e expansion developed by Weiss, Tabor and Carnevale (WTC) is one of the most powerful methods. In this paper, using any singular manifold, the expansion series in the usual Painlev́e analysis is shown to be resummable in some different ways. A simple nonstandard truncated expansion with a quite universal reduction function is u...
متن کاملA New Technique of Reduce Differential Transform Method to Solve Local Fractional PDEs in Mathematical Physics
In this manuscript, we investigate solutions of the partial differential equations (PDEs) arising inmathematical physics with local fractional derivative operators (LFDOs). To get approximate solutionsof these equations, we utilize the reduce differential transform method (RDTM) which is basedupon the LFDOs. Illustrative examples are given to show the accuracy and reliable results. Theobtained ...
متن کامل